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Goldstein (1931) has considered the stability of a shear layer within which the 
velocity and the density vary linearly and outside which they are constant. 
Rayleigh (1880, 1887) had found that the corresponding, homogeneous shear 
flow is unstable in and only in a finite band of wave-numbers. Goldstein con- 
cluded that a small density gradient renders the flow unstable for all wave- 
numbers. This conclusion appears to depend on the acceptance of all possible 
branches of a multi-valued eigenvalue equation, and it is shown that the principal 
branch of this eigenvalue equation yields one and only one unstable mode if and 
only if the wave-number lies in a band that decreases from Rayleigh’s band to 
zero as the Richardson number increases from 0 to B. 

1. Introduction 
Let hx and hy be Cartesian co-ordinates referred to a characteristic length h, 

with the y-axis directed vertically, let V be a characteristic velocity, and let 

1 for y 2 1 
y for -1 d y d  1 

-1 for y < - 1  

Following Goldstein ( 1931), we consider the stability of the two-dimensional, 
heterogeneous shear flow described by the velocity profile 

(1.2) 

(1.3) 

in a perfect, incompressible fluid. The Richardson number for the shear layer 

(1.4) 
(/yI < 1) is given by J = vgh/Vv2. 

The restriction (+ < 1 permits the usual Boussinesq approximation, by virtue of 
which the parameter venters the stability problem only through the parameter J .  

Assuming a small displacement 

~ ( x ,  y, t )  = Re ( F ( y )  eia+ct) ] (a>0, C = C r f i C i )  (1.5) 



332 John W .  Miles and Louis N .  Howard 

of the streamlines from their mean positions, where a is a dimensionless wave 
number and c is a dimensionless wave-speed, we seek the neutral curve that 
bounds the domain of unstable disturbances (ci > 0)  in an (a ,  J)-plane. We 
designate the disturbances comprised by this neutral curve as singular neutral 
modes. 

Rayleigh (1880) considered the homogeneous ( r ~  = J = 0) shear flow described 
by (1.2) and found that: singular neutral modes exist for a = 0 and a = ctl = 0.639; 
these modes are stationary (c  = 0); and c2 < 0 for 0 < a < al, so that the principle 
of exchange of stabilities holds. Goldstein ( 1931) considered the heterogeneous 
shear flow described by (1.2) and (1.3) and concluded that 'a slight heterogeneity 
(0 < J < 1) causes instability for all wavelengths'. This rather unexpected con- 
clusion (see remarks in last paragraph of $ 1 ,  Miles 1961) does not appear to have 
been refuted in the literature. 

It appears that Goldstein's conclusion depends on the acceptance of all possible 
branches of a multi-valued eigenvalue equation, t say 

A(c; a, V )  = 0, (1.6) 

where v = (&J)+. (1 .7 )  

We shall accept only a single branch of A and shall show that: the neutral curve 
J = Jo(a) is unique and single-valued, rising from (a ,  J )  = ( 0 , O )  to (arn, +) and 
then descending to (al, 0); one and only one singular neutral mode exists for each 
(a ,  J)-point on this curve; and this mode is stationary. It then follows from a 
general consideration of antisymmetric shear flows (Miles 1963) that there exists 
one and only one unstable disturbance for each (a, J)-point under the neutral 
curve [J < JO(a)] and that this mode experiences a simple exponential instability. 

Briefly stated, then, density stratification modifies Rayleigh's result by 
reducing the a-band of instability from (0, a,) to (am - , a, + ) as J increases from 
0 to $. 

2. Eigenvalue equation 

( U - c )  P) in the shear layer yields 
P(y)  = z"[AIu(z) +BL,(x)],  (2.1) 

where 2 = a ( y - c ) ,  (2.3) 

Goldstein's solution for F(y)  (actually he worked with the dependent variable 

I, is a modified Bessel function, v is given by (1.7), and A and B must satisfy the 
homogeneous equations implied by 

B' (y )  aP(y) = 0 for y = 1. (2.3) 

Assuming ci > 0 (ci + 0 + for a singular neutral mode) and requiring P(y) to be 
continuous in y = ( -  1, l), we can restrict the argument of z according to 

--?T < argx < 0 ( c i > O )  (2.4) 

(2 .5 )  

and continue the individual solutions around the branch point at x = 0 ac- 
cording to Z-*I~~(Z) = e(+'Fv) in( - 2)-* I*,,( -2). 

7 Prof. Goldstein (verbal communication) agrees with this assertion. 
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Introducing 
f ( Z ,  1’) = z-”[zI;(z) + ( z  - Q) I”(Z)] 

2, = a(1 T c )  and 
and invoking (2.4) and (2.5), we can place the eigenvalue equation implied by 
(2.1)-(2.3) in the form (1.6), with 

( 2 . 8 ~ ~ )  

= ei”n(Z+/Z-)”f(!Z+, v) f (Z- ,  - v) - e- ivn(Z+/Z-) -” j (Z+,  - v ) f ( Z - ,  v) 
(2.86) 

and (2.9) 
It is only in this last restriction that our discussion differs from that given by 
Goldstein; otherwise, our eigenvalue equation is equivalent to his (5.15). We 
observe that A is an odd function of v ;  accordingly, we need determine c only for 
v in the positive range (0, Q) if 0 < J < ). We also observe that f ( z ,  v) is an entire 
function of each of z and v. 

Let us consider, for example, the possible zeros of A as a -+ 0. Letting 2, + 0 
in (2.86), we obtain 

0 > arg(Z+/Z-)” > -vr > -Qn (ci > 0,O < v < Q). 

A = ()- v2) (nv)-lsin (m) [eiun(Z+/Z-)”- e-ivn(Z+/Z-)-”] [1+ O(Z,)] (2, -+ 0) .  
(2.10) 

c =  +.icot(m/2v) ( r = 1 , 2 ,  ...), (2.11) 

This has no zeros under the restriction (2.9), but it yields (cf. Goldstein’s (5.72)) 

if we accept all branches of A, qua function of c with branch points at, but no 
branch cuts from, c = k 1. We observe that at least some of the zeros given by 
(2.1 1) for any real value of v lie outside the circle [cI = 1, whereas unstable modes 
associated with the velocity profile (1.2) must lie within this circle (Howard 1961). 

3. Singular-neutral mode 
We can establish (Miles 1961) that necessary conditions for the existence of a 

singular neutral mode are:? - 1 < c < 1; - 4 < v < Q; and P(y)  must be of one 
exponent ( - Q + v or - Q - v), rather than a linear combination of the solutions 
of both exponents, in the neighbourhood of the singular point y = c. It follows 
that either A = 0 or B = 0 in (2.1), and (2.3) then implies that c must satisfy the 
simultaneous equations 

We shall prove thatf(z, v) has one and only one positive-real zero for - + < v < Q; 
accordingly, (3.1) can be satisfied only for c = 0 and implies the neutral curve 

on which a is a single-valued function of v. (We note that the number of zeros of 
the entire functionf ( x ,  v) in asufficiently large circle in a complex-x plane is equal 
to the number of zeros of z1-”IV(z) in that circle by virtue of RouchB’s theorem.) 

t The proofs given by Miles (1961) were for the boundary conditions F = 0 at y = yI, y2, 
but extensions for the boundary conditions (2.3) are straightforward. 

f [a( lTc) ,v]  = 0 ( - l < c < l ,  - $ < v < & ) .  (3.1) 

f ( a , v )  = 0 (c=O,a>O, - $ < v < i ) ,  (3.2) 
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Let HAZ) = z~:(z)/~,(z) = Q - + [ z . f ( z ,  v)/4(2)1, (3.3) 

under which transformation the differential equation for I , ( z )  goes over to the 

(3.4) 
Riccati equation zH;(z) + H;(z)  = v2 + 2 2 .  

Making use of the known, positive-definite integral 

2 I ; ( z ) z d z  = ( v 2 + 2 2 ) ~ ~ ( z ) - z 2 1 : 2 ( z )  

= 1,2(2) [v2+22-H;(z ) ] ,  (3.5) 

we deduce that zHL(z) > 0. (3.6) 

1: 
It follows that H,(z) increases monotonically from H,(O) = v to its asymptotic 
value of +(v2+z2)$ .  Invoking the restriction -8 < u < 4, we infer that 
H J z )  = 4-2 has one and only one positive-real root. Invoking the known fact 
that Z-~IJZ)  has no real zeros, we conclude that f ( z ,  u )  has one and only one 
positive-real zero. 

W a J 
4 0 0 
0 a m  t - a  a1 0 

TABLE 1 

Rather more can be said if we restrict u to be positive, for then 

Integrating H:(z), as given by (3.4), between 

( z  = O,H, = v) and ( x  = a,H, = i - a ) ,  

we obtain (3.8) 

Bounding this last integral with the aid of (3.7), we obtain 

Q-a-+a2 < v < *-a ( u > O ) .  (3.9) 

We can characterize the neutral curve in an (a, J)-plane by the table 1, where 
a = 0, a, are the Rayleigh end-points and a = a, locates the maximum. We 
already know that a1 z 0.639, and we deduce from (3.9) that 4 2 -  1 < a, < Q; 
a direct calculation from (3.2) yields a, = 0.415. The complete curve is plotted 
in figure 1. 

We have also computed the growth rates in the unstable range. Though the 
eigenvalue relation A = 0 with the restriction (2.9) is expressed in terms of the 
modified Bessel functions, this computation was actually done by a direct 
numerical integration of the Riccati equation associated with the linear second- 
order stability equation. For each of a series of values of Richardson number J 
and wave-number a, the equation was integrated (using a Runge-Kutta method) 
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from one end, the value of ci being adjusted to satisfy the appropriate condition 
at the other. The results are shown in figure 2, which gives the growth rate aci as 
a function of a for various values of J .  

The numerical calculation was done at the M.I.T. Computation Center. This 
work has been partially supported by the Office of Naval Research. 
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